Солнечная система. Солнце. Строение. Гелиосейсмология


Карта сайта

            
Астрономия
древнейшая из наук
 Античная астрономия
 Хронология астрономии
 Современная астрономия
Основы астрономии
 Начала астрономии
 Время и небесная сфера
 Созвездия
 Движение небесных тел
 Астроприборы
 Астрофизика
 Обзоры астрооборудования
 Астрономические наблюдения

Общая астрономия
 Солнечная система
 Звезды
 Наша Галактика
 Внегалактическая астрономия
 Внеземные цивилизации
 Астрономы мира и знаменательные даты

Дополнительно
 Форумы Astrogalaxy.ru
 Астрономия для детей
 Планетарии России
 Это интересно
 Новости астрономии
 О проекте






Солнечная система. Солнце. Строение. Гелиосейсмология


Солнце – раскаленный газовый шар, температура в центре которого очень высока, настолько, что там могут происходить ядерные реакции. В центре Солнца температура достигает 15 миллионов градусов, а давление в 200 миллиардов раз выше, чем у поверхности Земли. Газ сжат здесь до плотности около 1,5•105 кг/м3 (тяжелее железа). Зависимость температуры, давления и плотности Солнца от расстояния до центра. Радиус Солнца приблизительно равен 696 000 км.

Солнце – сферически симметричное тело, находящееся в равновесии. Плотность и давление быстро нарастают вглубь; рост давления объясняется весом всех вышележащих слоев. В каждой внутренней точке Солнца выполняется условие гидростатического равновесия. Это означает, что давление на любом расстоянии от центра уравновешивается гравитационным притяжением.

В центральной области с радиусом примерно в треть солнечного – ядре – происходят ядерные реакции. Затем через зону лучистого переноса энергия излучением переносится из внутренних областей Солнца к поверхности. И фотоны, и нейтрино рождаются в зоне ядерных реакций в центре Солнца. Но если нейтрино очень слабо взаимодействуют с веществом и мгновенно свободно покидают Солнце, то фотоны многократно поглощаются и рассеиваются до тех пор, пока не достигнут внешних, более прозрачных слоев атмосферы Солнца, которую называют фотосферой.

Пока температура высока – больше 2 миллионов градусов, – энергия переносится лучистой теплопроводностью, то есть фотонами. Зона непрозрачности, обусловленная рассеянием фотонов на электронах, простирается примерно до расстояния 2/3R радиуса Солнца. При понижении температуры непрозрачность сильно возрастает, и диффузия фотонов длится около миллиона лет. Примерно с расстоянии 2/3R находится конвективная зона. В этих слоях непрозрачность вещества становится настолько большой, что возникают крупномасштабные конвективные движения. Здесь начинается конвекция, то есть перемешивание горячих и холодных слоев вещества. Аналогичный процесс происходит в кипящей воде. Время подъема конвективной ячейки сравнительно невелико – несколько десятков лет.

Гелиосейсмология. Внутреннее строение Солнца. Исследование глубинных слоев Солнца в последнее время продвинулось вперед за счет гелиосейсмологии. Гелиосейсмология – наука, которая изучает колебания Солнца. В шестидесятых годах XX века астрономы обнаружили, что верхний слой солнечной атмосферы раз в пять минут поднимается и опускается. Благодаря этим «солнцетрясениям» астрофизики научились прослушивать Солнце, как врач слушает удары сердца человека.

В солнечной атмосфере распространяются акустические волны, подобные звуковым волнам в воздухе. В верхних слоях солнечной атмосферы волны, возникшие в конвективной зоне и в фотосфере, передают солнечному веществу часть механической энергии конвективных движений и производят нагревание газов последующих слоев атмосферы – хромосферы и короны. В результате верхние слои фотосферы с температурой около 4500 K оказываются самыми «холодными» на Солнце. Как вглубь, так и вверх от них температура газов быстро растет.

Всякая солнечная атмосфера постоянно колеблется. В ней распространяются как вертикальные, так и горизонтальные волны с длинами в несколько тысяч километров. Колебания носят резонансный характер и происходят с периодом около 5 минут.

Но самое интересное – регистрация скорости колебания солнечной поверхности. Эти скорости очень малы – десятки сантиметров в секунду, но спектральными приборами (используя эффект Доплера) измеряется изменение скорости во времени, а не само значение скорости. Удалось построить зависимость скорости от глубины, что привело к уточнению внутреннего строения Солнца.

Различные слои Солнца вращаются с разной скоростью. Стало ясно, что внутренние части Солнца вращаются быстрее; особенно быстро вращается ядро. Именно особенности такого вращения могут приводить к возникновению магнитного поля Солнца. Одна из нерешенных пока проблем – причины самих колебаний. Возможно, одной из причин может быть грануляция: выходящие на поверхность потоки плазмы вызывают разбегающиеся во все стороны волны. Однако, эта модель не может удовлетворительно ответить на все вопросы: в частности, почему волны столь устойчивы, что могут обежать все Солнце, не затухая.

Что является источником солнечной энергии? Какова природа процессов, в ходе которых производится огромное количество энергии? Сколько времени будет еще светить Солнце? Первые попытки ответить на эти вопросы были сделаны астрономами в середине ХIX века, после формулирования физиками закона сохранения энергии.

Роберт Майер предположил, что Солнце светит за счет постоянной бомбардировки поверхности метеоритами и метеорными частицами. Эта гипотеза была отвергнута, так как простой расчет показывает, что для поддержания светимости Солнца на современном уровне необходимо, чтобы на него за каждую секунду выпадало 2•1015 кг метеорного вещества. За год это составит 6•1022 кг, а за время существования Солнца, за 5 миллиардов лет – 3•1032 кг. Масса Солнца М = 2•1030 кг, поэтому за пять миллиардов лет на Солнце должно было выпасть вещества в 150 раз больше массы Солнца. Вторая гипотеза была высказана Гельмгольцем и Кельвином также в середине ХIX века. Они предположили, что Солнце излучает за счет сжатия на 60–70 метров ежегодно. Причина сжатия – взаимное притяжение частиц Солнца, именно поэтому данная гипотеза получила название контракционной. Если сделать расчет по данной гипотезе, то возраст Солнца будет не больше 20 миллионов лет, что противоречит современным данным, полученным по анализу радиоактивного распада элементов в геологических образцах земного грунта и грунта Луны.

Третью гипотезу о возможных источниках энергии Солнца высказал Джеймс Джинс в начале ХХ века. Он предположил, что в недрах Солнца содержатся тяжелые радиоактивные элементы, которые самопроизвольно распадаются, при этом излучается энергия. Например, превращение урана в торий и затем в свинец, сопровождается выделением энергии. Последующий анализ этой гипотезы также показал ее несостоятельность; звезда, состоящая из одного урана, не выделяла бы достаточно энергии для обеспечения наблюдаемой светимости Солнца. Кроме того, существуют звезды, по светимости во много раз превосходящие светимость нашей звезды. Маловероятно, что в тех звездах запасы радиоактивного вещества будут также больше.

Химический состав Солнца. Самой вероятной гипотезой оказалась гипотеза синтеза элементов в результате ядерных реакций в недрах звезд. В 1935 году Ханс Бете выдвинул гипотезу, что источником солнечной энергии может быть термоядерная реакция превращения водорода в гелий. Именно за это Бете получил Нобелевскую премию в 1967 году. Химический состав Солнца примерно такой же, как и у большинства других звезд. Примерно 75 % – это водород, 25 % – гелий и менее 1 % – все другие химические элементы (в основном, углерод, кислород, азот и т.д.). Сразу после рождения Вселенной «тяжелых» элементов не было совсем. Все они, т.е. элементы тяжелее гелия и даже многие альфа-частицы, образовались в ходе «горения» водорода в звездах при термоядерном синтезе. Характерное время жизни звезды типа Солнца десять миллиардов лет.

Основной источник энергии – протон-протонный цикл – очень медленная реакция (характерное время 7,9•109 лет), так как обусловлена слабым взаимодействием. Ее суть состоит в том, что из четырех протонов получается ядро гелия. При этом выделяются пара позитронов и пара нейтрино, а также 26,7 МэВ энергии. Количество нейтрино, излучаемое Солнцем за секунду, определяется только светимостью Солнца. Поскольку при выделении 26,7 МэВ рождается 2 нейтрино, то скорость излучения нейтрино: 1,8•1038 нейтрино/с.

Прямая проверка этой теории – наблюдение солнечных нейтрино. Нейтрино высоких энергий (борные) регистрируются в хлор-аргонных экспериментах (эксперименты Дэвиса) и устойчиво показывают недостаток нейтрино по сравнению с теоретическим значением для стандартной модели Солнца. Нейтрино низких энергий, возникающие непосредственно в рр-реакции, регистрируются в галлий-германиевых экспериментах (GALLEX в Гран Сассо (Италия – Германия) и SAGE на Баксане (Россия – США)); их также «не хватает».







Синтез гелия. По некоторым предположениям, если нейтрино имеют отличную от нуля массу покоя, возможны осцилляции (превращения) различных сортов нейтрино (эффект Михеева – Смирнова – Вольфенштейна) (существует три сорта нейтрино: электронное, мюонное и тауонное нейтрино). Т.к. другие нейтрино имеют гораздо меньшие сечения взаимодействия с веществом, чем электронное, наблюдаемый дефицит может быть объяснен, не меняя стандартной модели Солнца, построенной на основе всей совокупности астрономических данных. Каждую секунду Солнце перерабатывает около 600 миллионов тонн водорода. Запасов ядерного топлива хватит еще на пять миллиардов лет, после чего оно постепенно превратится в белый карлик.

Центральные части Солнца будут сжиматься, разогреваясь, а тепло, передаваемое при этом внешней оболочке, приведет к ее расширению до размеров, чудовищных по сравнению с современными: Солнце расширится настолько, что поглотит Меркурий, Венеру и будет тратить «горючее» в сто раз быстрее, чем в настоящее время. Это приведет к увеличению размеров Солнца; наша звезда станет красным гигантом, размеры которого сравнимы с расстоянием от Земли до Солнца! Жизнь на Земле исчезнет или найдет пристанище на внешних планетах.

Мы, конечно, будем заранее поставлены в известность о таком событии, поскольку переход к новой стадии займет примерно 100–200 миллионов лет. Когда температура центральной части Солнца достигнет 100 000 000 К, начнет сгорать и гелий, превращаясь в тяжелые элементы, и Солнце вступит в стадию сложных циклов сжатия и расширения. На последней стадии наша звезда потеряет внешнюю оболочку, центральное ядро будет иметь невероятно большую плотность и размеры, как у Земли. Пройдет еще несколько миллиардов лет, и Солнце остынет, превратившись в белый карлик. Наблюдаемое излучение Солнца возникает в его тонком внешнем слое, который называется фотосферой. Толщина этого слоя 0,001R = 700 км. В фотосфере образуется видимое излучение Солнца, имеющее непрерывный спектр. Плотность вещества на нижней границе фотосферы 5•10–7 г/см3 , тогда как на верхней границе она в тысячу раз меньше (атмосфера Земли у поверхности более плотна).

«Видимая» поверхность Солнца определяется той глубиной в атмосфере, ниже которой она практически непрозрачна. За эту поверхность условно принимают уровень, на котором при наблюдении сверху оптическая толщина на длине волны λ = 500 нм достигает единицы. От него отсчитывают высоту h в атмосфере. Видимый нами свет излучается отрицательными ионами водорода. Они же его и поглощают, поэтому с глубиной фотосфера быстро теряет прозрачность. Вот почему видимый край Солнца кажется нам очень резким.

Солнце – газовый шар, не имеющий четких границ. Однако мы видим его резко очерченным потому, что практически все излучение Солнца исходит из фотосферы.








Грануляция на Солнце. Фотография сделана в узком диапазоне спектра.

На поверхности Солнца можно разглядеть много деталей. Вся фотосфера Солнца состоит из светлых зернышек, пузырьков. Эти зернышки называются гранулами. Размеры гранул невелики, 1000–2000 км (около 1" дуги), расстояние между ними – 300–600 км. На Солнце наблюдается одновременно около миллиона гранул. Каждая гранула существует несколько минут. Гранулы окружены темными промежутками, как бы сотами. В гранулах вещество поднимается, а вокруг них – опускается. Грануляция – проявление конвекции в более глубоких слоях Солнца. Гранулы создают общий фон, на котором можно наблюдать несравненно более масштабные образования, такие, как протуберанцы, факелы, солнечные пятна и др.




Строение внешних слоев Солнца. Хромосфера Солнца видна только в моменты полных солнечных затмений. Луна полностью закрывает фотосферу, и хромосфера вспыхивает, как небольшое кольцо ярко-красного цвета, окруженное жемчужно-белой короной. Хромосфера получила свое название именно из-за этого явления (греч. «окрашенная сфера»).

Размеры хромосферы 10–15 тысяч километров, а плотность вещества в сотни тысяч раз меньше, чем в фотосфере. Температура в хромосфере быстро растет, достигая в верхних ее слоях десятков тысяч градусов. Рост температуры объясняется воздействием магнитных полей и волн, проникающих в хромосферу из зоны конвективных движений. Здесь нагрев происходит, как в микроволновой печи, только гигантских размеров. На краю хромосферы наблюдаются выступающие язычки пламени – хромосферные спикулы, представляющие собою вытянутые столбики из уплотненного газа. Температура этих струй выше, чем температура фотосферы.


Спикулы в хромосфере. Фотография сделана с использованием фильтра. Во время полного солнечного затмения можно получить спектр хромосферы, который называется спектр вспышки. Он состоит из ярких эмиссионных линий водорода бальмеровской серии, гелия, ионизированного кальция и других элементов, которые внезапно вспыхивают во время полной фазы затмения.

Самая внешняя, самая разреженная и самая горячая часть солнечной атмосферы – корона. Она прослеживается от солнечного лимба до расстояний в десятки солнечных радиусов. Несмотря на сильное гравитационное поле Солнца, это возможно благодаря огромным скоростям движения частиц, составляющих корону. Корона имеет температуру около миллиона градусов и состоит из высокоионизированного газа. Возможно, причиной такой высокой температуры являются поверхностные выбросы солнечного вещества в виде петель и арок. Миллионы колоссальных фонтанов переносят в корону вещество, нагретое в глубинных слоях Солнца.

Яркость короны в миллионы раз меньше, чем фотосферы, поэтому корону можно видеть только во время полного солнечного затмения, либо с помощью коронографа. Наиболее яркую ее часть принято называть внутренней короной. Она удалена от поверхности Солнца на расстояние не более одного радиуса. Внешняя корона Солнца имеет протяженные границы.



Рентгеновский снимок Солнца в 1973 году. Во внутренней короне видна темная корональная «дыра».






Вид корональных лучей заметно меняется от минимума к максимуму солнечной активности.














Источник информации: "Открытая Астрономия 2.5", ООО "ФИЗИКОН"

Главная страница раздела

Copyright © 2004 - 2016, Проект 'Астрогалактика' • выпущен 12.07.2004