Солнечная система. Планеты Солнечной системы. Уран.


Карта сайта

            
Астрономия
древнейшая из наук
 Античная астрономия
 Хронология астрономии
 Современная астрономия
Основы астрономии
 Начала астрономии
 Время и небесная сфера
 Созвездия
 Движение небесных тел
 Астроприборы
 Астрофизика
 Обзоры астрооборудования
 Астрономические наблюдения

Общая астрономия
 Солнечная система
 Звезды
 Наша Галактика
 Внегалактическая астрономия
 Внеземные цивилизации
 Астрономы мира и знаменательные даты

Дополнительно
 Форумы Astrogalaxy.ru
 Астрономия для детей
 Планетарии России
 Это интересно
 Новости астрономии
 О проекте
http://knyaz-bereg.ru/ предлагаю купить участок в раменском районе.






Планеты Солнечной системы. УРАН.



Данные, полученные с «Вояджера-2», показали, что планета Уран имеет небольшое твердое железно-каменное ядро, над которым сразу начинается плотная атмосфера. Никаких океанов на Уране, по-видимому, нет. Такое строение планеты теперь называют двухслойной моделью. Температура в ядре достигает 7000 К, а давление – 6 миллионов атмосфер. Эффективная температура Урана 59 К, что лишь чуть-чуть превышает ту температуру, которую он имел бы только под влиянием солнечного тепла. Следовательно, Уран почти не имеет внутренних источников энергии. Предполагают, что вскоре после образования Солнечной системы произошло столкновение Урана с другим большим телом. Не исключено, что в результате этого столкновения Уран был опрокинут набок. Возможно, обедненность легкими газами – следствие недостаточной массы зародыша планеты, и в ходе образования Уран не смог удержать возле себя большее количество водорода и гелия. А может быть, в этом месте зарождающейся планетной системы вовсе не было столько легких газов, что, конечно, в свою очередь, тоже требует объяснений. Как видно, ответы на вопросы, связанные с Ураном, могут пролить свет на судьбу всей Солнечной системы.

Химический состав атмосферы Урана.

Атмосфера на Уране мощная, толщиной не менее 8000 км. Атмосфера Урана (но не Уран в целом!) состоит примерно из 83 % водорода, 15 % гелия и 2 % метана. Метан, ацетилен и другие углеводороды в атмосфере планеты встречаются в значительно больших количествах, чем на Юпитере и Сатурне. Именно метановая дымка хорошо поглощает красные лучи, поэтому Уран кажется голубым. Подобно другим газовым планетам, Уран имеет полосы облаков, которые очень быстро перемещаются. Но они чрезвычайно плохо различимы и видимы только на снимках с большим разрешением, сделанные «Вояджером-2». Последние наблюдения с HST позволили рассмотреть большие облака. Есть предположение о том, что эта возможность появилась в связи с сезонными эффектами, ведь как не трудно сообразить, зима от лета на Уране сильно разнятся: целое полушарие зимой на несколько лет прячется от Солнца! Хотя, Уран получает в 370 раз меньше тепла от Солнца, чем Земля, так что летом там тоже не бывает жарко. Ветры в средних широтах на Уране перемещают облака в тех же направлениях, что и на Земле. Эти ветры дуют со скоростью от 40 до 160 м/с; на Земле быстрые потоки в атмосфере перемещаются со скоростью около 50 м/с. Дневная освещенность на Уране соответствует земным сумеркам сразу после захода Солнца. Минимальная температура 53 К наблюдалась на уровне 0,1 бар. Выше и ниже температура повышается. Температура атмосферы на уровне 2,3 бар достигает 100 К. У Урана почти такое же сильное магнитное поле, как у Земли. На уровне облаков напряженность магнитного поля равна 0,23 Гс. Но конфигурация этого магнитного поля очень сложная. Очень приближенно его можно считать дипольным, если ось диполя сместить от центра на 1/3 радиуса и наклонить к оси вращения на 60°. Компас на Уране не будет показывать на географический полюс. Магнитное поле делает возможным «полярные» сияния, наблюдающиеся в верхней части атмосферы.

Магнитосфера Урана.

Несмотря на сложность наблюдений, астрономы прошлых веков открыли почти все крупные спутники Урана. Спутниковая система лежит в экваториальной плоскости планеты, то есть почти перпендикулярно к плоскости ее орбиты. Внутренние 10 лун – маленькие по размерам. Спутник 1986U10, найденный по старым фотографиям, переданным с АМС «Вояджер-2» в 1986 году, пока не имеет собственного имени. Его, как и другие спутники Урана, назовут в честь героя какой-нибудь пьесы Шекспира.




Система спутников Урана.

На поверхности Титании обнаружено огромное количество кратеров. Стены некоторых каньонов кажутся светлыми, так как покрыты льдом. Спутники Урана Оберон и Титания очень похожи друг на друга. Их радиусы приблизительно вдвое меньше радиуса Луны. Поверхности обеих лун покрыты старыми метеоритными кратерами и сеткой тектонических разломов с признаками древнего вулканизма. Через все южное полушарие Оберона проходит широкая тектоническая долина, также доказывающая вулканическую деятельность в прошлом. Температура на поверхности спутников очень низкая, около 60 К.

Кольца Урана крупным планом.

Кольца Урана были случайно обнаружены в 1977 году во время покрытия Ураном яркой звезды. При этом звезда мигнула 9 раз до и 9 раз после того, как Уран ее полностью закрыл. Так были открыты девять плотных, узких и далеко отстоящих друг от друга темных колец Урана. Ширина их всего 1–10 км, только самое широкое внешнее кольцо имеет размер 96 км. Кольца Урана практически черные: альбедо равно 0,03. Они состоят из каменистых частиц не крупнее нескольких метров в поперечнике. Каждое кольцо движется практически как единое целое. Проблема устойчивости колец Урана остается пока неразрешенной. Планетные кольца оказались обязательным элементом и закономерным явлением в спутниковых системах планет-гигантов. Обилие экспериментального материала не могло не вызвать интенсивного развития теоретических моделей. Это не просто интерес к новым астрономическим объектам. Все большее распространение получает мнение, что планетные кольца – ключ к пониманию космогонии всей Солнечной системы. Считается, что кольца, в которых раздельно вращаются отдельные частицы, являются древнейшими представителями Солнечной системы. Исследование таких дисковых систем имеет принципиальную важность для космогонии, так как на протостадии это самый распространенный тип динамической системы (протопланетное облако, протоспутниковые диски, протокольца планет). К этому же классу объектов нужно отнести и протопланетные облака вокруг других звезд, аккреционные диски в системах двойных звезд, галактические и протогалактические диски. Таким образом, планетные кольца предоставляют уникальную возможность получить важнейшую информацию о коллективных и других процессах, протекавших на стадии образования планет и Солнечной системы. Перечислим основные проблемы физики планетных колец.

  • Почему существуют планетные кольца? Классические модели формирования колец предполагали, что кольца – это область приливного разрушения крупных тел. Но после полетов «Вояджеров» стало ясно, что для разрушения частиц наблюдаемых размеров (10 м) приливные силы слишком слабы. Вопрос о причинах существования колец оказался прямо связан с механическими характеристиками типичной частицы.
  • Что вызвало расслоение колец Сатурна? Наблюдаемая иерархическая структура колец Сатурна составлена по принципу «матрешки»: широкие ~1000 км кольца состоят из системы более узких ~100 км колец и т.д. До сих пор не существует теории, объясняющей наличие тонких колечек.
  • Как образовались и почему не разрушаются кольца Урана? Наиболее популярна гипотеза о том, что узкие, эллиптические кольца Урана сформировались и сохраняют стабильность благодаря двум спутникам-«пастухам» по краям каждого кольца. Однако «Вояджер-2» в 1986 году не обнаружил между кольцами Урана столь необходимых для этой гипотезы спутников-«пастухов». При этом данные «Вояджера-2» подтвердили альтернативную гипотезу о резонансной природе колец Урана.

Для того, чтобы дать физически цельную картину существующих планетных колец, приходится обращаться к самым различным методам и областям науки: к небесной механике и физике льда и снега, к теории удара и кинетической теории газов, к теории неустойчивостей и физике плазмы. Этот вопрос все еще ждет своих исследователей.





Источник информации: "Открытая Астрономия 2.5", ООО "ФИЗИКОН"

Главная страница раздела

Copyright © 2004 - 2016, Проект 'Астрогалактика' • выпущен 12.07.2004

Hide|Show