Проект 'Астрогалактика' информирует:.

Справка. К вопросу наблюдений небесных объектов

Астрономические наблюдения. Главная рубрики

Огромные пространственно-временные масштабы изучаемых объектов и явлений определяют отличительные особенности астрономии. Сведения о том, что происходит за пределами Земли в космическом пространстве, ученые получают главным образом на основе приходящего от этих объектов света и других видов излучения. Наблюдения - основной источник информации в астрономии. Эта первая особенность астрономии отличает ее от других естественных наук (например, физики или химии), где значительную роль играют опыты, эксперименты. Возможности проведения экспериментов за пределами Земли появились лишь благодаря космонавтике. Но и в этих случаях речь идет о проведении экспериментальных исследований небольшого масштаба, таких, например, как изучение химического состава лунных или марсианских пород. Трудно представить себе эксперименты над планетой в целом, звездой или галактикой. Вторая особенность объясняется значительной продолжительностью целого ряда изучаемых в астрономии явлений (от сотен до миллионов и миллиардов лет). Поэтому непосредственно наблюдать происходящие изменения невозможно. Когда изменения происходят особенно медленно, приходится проводить наблюдения многих родственных между собой объектов, например звезд. Основные сведения об эволюции звезд получены именно таким способом. Более подробно об этом будет рассказано далее. Третья особенность астрономии обусловлена необходимостью указать положение небесных тел в пространстве (их координаты) и невозможностью различить, какое из них находится ближе, а какое дальше от нас. На первый взгляд все наблюдаемые светила кажутся нам одинаково далекими.



Люди в древности считали, что все звезды располагаются на небесной сфере, которая как единое целое вращается вокруг Земли. Уже более 2000 лет тому назад астрономы стали применять способы, которые позволяли указать расположение любого светила на небесной сфере по отношению к другим космическим объектам или наземным ориентирам. Представлением о небесной сфере удобно пользоваться и теперь, хотя мы знаем, что этой сферы реально не существует. Построим небесную сферу и проведем из ее центра луч по направлению к звезде А. Там, где этот луч пересечет поверхность сферы, поместим точку А1, изображающую эту звезду. Звезда В будет изображаться точкой В1. Повторив подобную операцию для всех наблюдаемых звезд, мы получим на поверхности сферы изображение звездного неба - звездный глобус. Ясно, что если наблюдатель находится в центре этой воображаемой сферы, то для него направление на сами звезды и на их изображения на сфере будут совпадать. Расстояния между звездами на небесной сфере можно выражать только в угловой мере. Эти угловые расстояния измеряются величиной центрального угла между лучами, направленными на одну и другую звезду, или соответствующими им дугами на поверхности сферы. Для приближенной оценки угловых расстояний на небе полезно запомнить такие данные: угловое расстояние между двумя крайними звездами ковша Большой Медведицы (альфа и бета) составляет около 5°, а от а Большой Медведицы до а Малой Медведицы (Полярной звезды) - в 5 раз больше - примерно 25°. Простейшие глазомерные оценки угловых расстояний можно провести также с помощью пальцев вытянутой руки.




Только два светила - Солнце и Луну - мы видим как диски. Угловые диаметры этих дисков почти одинаковы - около 30', или 0,5°. Угловые размеры планет и звезд значительно меньше, поэтому мы их видим просто как светящиеся точки. Для невооруженного глаза объект не выглядит точкой в том случае, если его угловые размеры превышают 2 - 3'. Это означает, в частности, что наш глаз различает каждую по отдельности светящуюся точку (звезду) в том случае, если угловое расстояние между ними больше этой величины. Иначе говоря, мы видим объект не точечным лишь в том случае, если расстояние до него превышает его размеры не более чем в 1700 раз. О том, как на основании угловых измерений определяют расстояния до небесных тел и их линейные размеры, будет рассказано далее. Чтобы отыскать на небе светило, надо указать, в какой стороне горизонта и как высоко над ним оно находится. С этой целью используется система горизонтальных координат - азимут и высота.

Для наблюдателя, находящегося в любой точке Земли, нетрудно определить вертикальное и горизонтальное направления. Первое из них определяется с помощью отвеса и изображается на чертеже отвесной линией ZZ', проходящей через центр сферы. Точка Z, расположенная прямо над головой наблюдателя, называется зенитом. Плоскость, которая проходит через центр сферы перпендикулярно отвесной линии, образует при пересечении со сферой окружность - истинный, или математический, горизонт. Высота светила отсчитывается по окружности, проходящей через зенит и светило М, и выражается длиной дуги этой окружности от горизонта до светила. Эту дугу и соответствующий ей угол принято обозначать буквой h. Высота светила, которое находится в зените, равна 90°, на горизонте - 0°. Положение светила относительно сторон горизонта указывает его вторая координата - азимут, обозначаемый буквой А. Азимут отсчитывается от точки юга в направлении движения часовой стрелки, так что азимут точки юга равен 0°, точки запада - 90° и т. д. Горизонтальные координаты указывают положение светила на небе в данный момент и вследствие вращения Земли непрерывно меняются. На практике, например в геодезии, высоту и азимут измеряют специальными угломерными оптическими приборами - теодолитами.





Авторство, источник и публикация:
1. Подготовлено проектом 'Астрогалактика'
2. Публикация проекта 07.04.2007


Астрономические наблюдения. Главная рубрики

Выпущено проектом 'Астрогалактика' 07.04.2007

Hide|Show