Общая астрономия. Население Нашей Галактики
Долгое время звезды не случайно считались «неподвижными». Измеряя взаимное расположение звезд на небе, астрономы только в начале XVIII в. заметили, что координаты некоторых ярких звезд (Альдебарана, Арктура, Сириуса) изменились по сравнению с теми, которые были получены в древности. Смещение звезд, которое назвали собственным движением, было обнаружено раньше, чем удалось измерить их годичный параллакс. Собственным движением звезды называется ее видимое угловое смещение за год по отношению к слабым далеким звездам. Смещение звезд на небе в течение года невелико. Однако на протяжении десятков тысяч лет собственные движения звезд существенно сказываются на их положении, вследствие чего меняются привычные очертания созвездий. Скорости движения в пространстве у различных звезд отличаются довольно значительно. Самая «быстрая» из них, получившая название «летящая звезда Барнарда», за год перемещается по небу на 10,8". Это означает, что 0,5° - угловой диаметр Солнца и Луны она проходит менее чем за 200 лет. В настоящее время эта звезда (ее звездная величина 9,7) находится в созвездии Змееносца. Большинство из 300 000 звезд, собственное движение которых измерено, меняют свое положение значительно медленнее - смещение составляет всего лишь сотые и тысячные доли угловой секунды за год.
В настоящее время собственные движения звезд определяют, сравнивая положение звезд на фотографиях данного участка звездного неба, полученных на одном и том же телескопе с промежутком времени в несколько лет или даже десятилетий. Но даже в этом случае смещение сравнительно близких звезд на фоне более далеких столь мало, что его можно определить только с помощью специальных микроскопов. Скорость звезды в пространстве можно представить как векторную сумму двух компонентов, один из которых направлен по лучу зрения, другой - перпендикулярно ему. Скорость по лучу зрения (vr) непосредственно определяется по эффекту Доплера - смещению линий в спектре звезды. Компонент скорости по направлению, перпендикулярному лучу зрения (v?), можно вычислить только в том случае, если измерить собственное движение звезды и ее параллакс, т. е. знать расстояние до нее. Пространственные скорости звезд относительно Солнца (или Земли) составляют, как правило, десятки километров в секунду. Изучение собственных движений и лучевых скоростей показало, что Солнечная система движется со скоростью 20 км/с в направлении созвездия Геркулеса.
Точка небесной сферы, в направлении которой она движется относительно ближайших звезд, называется апексом Солнца. Анализ собственных движений и лучевых скоростей звезд по всему небу показал, что они движутся вокруг центра Галактики. Это движение звезд воспринимается как вращение нашей звездной системы, которое подчиняется определенной закономерности: угловая скорость вращения убывает по мере удаления от центра, а линейная возрастает, достигая максимального значения на том расстоянии, на котором находится Солнце, а затем практически остается постоянной. Звезды, газ и другие объекты, составляющие галактический диск, движутся по орбитам, близким к круговым. Солнце вместе с близлежащими звездами обращается вокруг центра Галактики со скоростью около 250 км/с, совершая один оборот примерно за 200 млн. лет. Расстояние от Солнца до центра Галактики составляет 23-28 тыс. св. лет (7-9 тыс. пк). Скорость обращения Солнца практически совпадает со скоростью, с которой на данном расстоянии от центра Галактики движется волна уплотнения, формирующая спиральные рукава. Эта область Галактики получила название коротационной окружности (от англ, corotation - совместное вращение). Оказавшиеся здесь Солнце и другие звезды находятся в привилегированном положении. Все остальные звезды периодически попадают внутрь спиральных рукавов, поскольку их линейные скорости не совпадают со скоростью обращения волны уплотнения вокруг центра Галактики. Следовательно, наша планета и вся Солнечная система не испытывают на себе катастрофического влияния тех бурных процессов, которые происходят внутри спиральных рукавов. Стабильность условий, в которых возникла и миллиарды лет существует Солнечная система, может рассматриваться как один из важнейших факторов, обусловивших происхождение и развитие жизни на Земле. Межзвездное вещество распределено в объеме
Галактики весьма неравномерно. Основная масса газа и пыли сосредоточена в слое небольшой толщины (около 200-300 пк) вблизи плоскости Млечного Пути. Местами это вещество сгущается в огромные (диаметром сотни световых лет) облака, которые загораживают от нас расположенные за ними звезды. Именно такие облака наблюдаются как темные промежутки в Млечном Пути, которые долгое время считались областями, где звезд нет, а потому через них можно заглянуть за пределы Млечного Пути. Самое большое и близкое к нам облако вызывает хорошо заметное раздвоение Млечного Пути, которое протянулось от созвездия Орла до созвездия Скорпиона. Оно показано на картах звездного неба. Свет звезд рассеивает и поглощает космическая пыль, частицы которой по своим размерам сравнимы с длиной световой волны. Частицы такого размера сильнее поглощают более коротковолновое излучение в сине-фиолетовой части спектра; в длинноволновой (красной) его части поглощение слабее, поэтому наряду с ослаблением света далеких объектов наблюдается их покраснение. Пылинки имеют различный химический состав (графит, силикаты, лед и т. п.) и довольно вытянутую форму. В облаках концентрация частиц составляет всего несколько десятков атомов на 1 см3 . В пространстве между облаками она по крайней мере в 100 раз меньше, чем в облаках.
Масса пыли составляет всего несколько процентов массы межзвездного вещества, состоящего в основном из молекулярного водорода с небольшими примесями других газов. Но даже столь малое содержание пыли при тех огромных расстояниях, которые проходит свет от далеких звезд, вызывает его значительное ослабление. В среднем оно составляет 1,5 звездной величины на 1000 пк, а в облаках может достигать 30 звездных величин. Сквозь такую завесу излучение в оптическом диапазоне практически не проникает, что, в частности, лишает нас возможности увидеть ядро Галактики, которое можно изучать, только принимая его инфракрасное и радиоизлучение. Таким образом, межзвездное поглощение света значительно осложняет изучение структуры Галактики и расположения в ней звезд. Вторая сложность заключается в том, что более половины межзвездного вещества в Галактике составляет нейтральный водород, который не светится сам и не поглощает свет. Сведения о его распределении в Галактике были получены благодаря радиоастрономическим исследованиям, при которых удалось использовать особенности строения атома водорода. Оказалось, что основной уровень энергии этого атома имеет два подуровня. При переходе с одного из них на другой происходит испускание кванта с частотой, соответствующей длине волны 21 см. В каждом отдельном атоме такой переход происходит в среднем один раз за 11 млн. лет, но благодаря тому, что водород составляет основную массу вещества Галактики, радиоизлучение на волне 21 см оказывается достаточно интенсивным. Именно по радиоизлучению водорода были выявлены спиральные ветви, вдоль которых он сконцентрирован. Спиральная структура в галактическом диске прослеживается, хотя и не так надежно, по другим объектам: горячим звездам классов О и В, а также светлым туманностям. Солнце находится почти посередине между двумя спиральными ветвями, удаленными от него примерно на 3 тыс. св. лет. Они названы по имени созвездий, в которых заметны их участки, - рукав Стрельца и рукав Персея. По современным представлениям, спиральные ветви являются волнами плотности, причем движутся они вокруг центра Галактики с постоянной угловой скоростью независимо от звезд и других объектов. Природу спиральных ветвей удалось выяснить, изучая не только нашу, но и другие сходные с нею галактики, о которых будет рассказано далее. Физические условия в межзвездной среде весьма разнообразны, поэтому даже сходные по своей природе и близкие по составу газопылевые облака выглядят по-разному.
Они могут наблюдаться как темные туманности, например весьма примечательная по форме Конская Голова в созвездии Ориона. Иной вид приобретает облако, если поблизости от него находится достаточно яркая горячая звезда. Пыль, входящая в состав облака, отражает свет этой звезды, и облако выглядит как светлая туманность, спектр которой совпадает со спектром звезды. Очень горячие звезды (с температурой 20000-30 000 К), которые обладают значительным ультрафиолетовым излучением, вызывают видимое флуоресцентное свечение газов, входящих в состав облака. В спектре таких облаков, которые получили название диффузных газовых туманностей, наблюдаются яркие линии водорода, кислорода и других элементов. Типичным объектом является Большая туманность Ориона, которую можно видеть в хороший бинокль. Плотность этих туманностей очень мала - порядка 10-18 -10-20 кг/м3. Тем самым астрофизика обеспечивает возможность изучать поведение газа в таких условиях, которые пока неосуществимы в земных лабораториях. В спектрах столь разреженных газов появляются линии излучения, которые ранее никогда не удавалось наблюдать. Две яркие зеленые линии спектра туманностей довольно долго приписывались гипотетическому, существующему только в туманностях элементу, который, по аналогии с гелием, стали называть небулием (от лат. nebula - туманность). Впоследствии выяснилось, что эти линии принадлежат атому кислорода, потерявшему два электрона. Астрономы давно считали, что звезды образуются из межзвездной среды, однако обнаружить области звездообразования и проследить за тем, как этот процесс происходит, удалось только в последние десятилетия благодаря наблюдениям в инфракрасном и радиодиапазонах.
На фоне светлых туманностей нередко бывают видны темные пятна и прожилки. Так выглядят наиболее плотные и холодные части межзвездного вещества, получившие название молекулярных облаков, которых в настоящее время известно несколько тысяч. Масса таких облаков может достигать миллиона масс Солнца, а диаметр - 60 пк. Большая часть из них обнаружена только по радиоизлучению. Именно в этих облаках, состоящих в основном из молекулярного водорода и гелия, происходит образование звезд. Как примесь в этих облаках присутствуют молекулы СО, СН3СНО, СН3ОН, NH3 и многие другие. Пыль, относительное содержание которой в облаках невелико, делает их непрозрачными. Плотность молекулярных облаков в сотни раз больше плотности облаков атомарного водорода, а температура их всего примерно 10 К (-263 °С). Именно в таких условиях гравитационные силы могут преодолеть газовое давление и вызвать неудержимое сжатие облака - его коллапс. Практически можно считать, что происходит свободное падение вещества. Возникающая при этом неоднородность отдельных частей облака приводит к тому, что оно распадается на отдельные фрагменты (сгустки), каждый из которых продолжает сжиматься. Этот процесс может повторяться до тех пор, пока не образуются фрагменты, которые вследствие высокой плотности будут непрозрачными для излучения, и вещество не сможет уносить выделяющееся тепло. Эти зародыши будущих звезд принято называть протозвездами (от греч. protos - первый). В процессе превращения фрагмента облака в звезду происходит колоссальное изменение физических условий: температура возрастает примерно в 1 млн. раз, а плотность увеличивается в 10 раз.
Продолжительность всего процесса по космическим меркам невелика: для такой звезды, как Солнце, она составляет около 1 млн. лет. Протозвезда еще не имеет термоядерных источников энергии, излучая за счет энергии, выделяющейся при сжатии. На центральную, наиболее плотную часть протозвезды продолжает падать окружающий ее газ. С ростом массы протозвезды растет температура в ее недрах, и когда она достигает нескольких миллионов кельвин, начинаются термоядерные реакции. Сжатие прекращается, сила тяжести уравновешена внутренним давлением горячего газа - протозвезда превратилась в звезду. Согласно современным представлениям, рождающиеся звезды на определенном этапе проходят стадию звезды-кокона. Протозвезды и очень молодые звезды обычно окружены газопылевой оболочкой из того вещества, которое еще не упало на звезду. Эта оболочка делает невозможным наблюдение рождающейся звезды в оптическом диапазоне. Однако сама оболочка разогревается излучением звезды до температуры 300-600 К и является источником инфракрасного излучения. Таких объектов к настоящему времени обнаружено уже более 250. Излучение звезды нагревает окружающую газовую оболочку и постепенно рассеивает ее полностью или только частично. Разлет остатков облака, разогретых родившимися в нем звездами, наблюдается в огромном комплексе облаков в Орионе. Этот очаг звездообразования является одним из ближайших к Земле и наиболее заметным. Две другие, самые близкие области звездообразования находятся в темных облаках созвездий Тельца и Змееносца. В отдельных случаях от оболочки-кокона остаются газопылевые диски, частицы которых обращаются вокруг звезд. Изображения таких объектов впервые получены с помощью космического телескопа им. Хаббла. Вероятно, из вещества одного из таких дисков, который образовался вместе с будущим Солнцем, около 5 млрд. лет тому назад сформировалась наша Земля и все другие тела Солнечной системы. Иная форма взаимосвязи звезд и межзвездного вещества наблюдается в туманностях, которые образуются на определенных этапах эволюции звезд. К их числу относятся планетарные туманности, которые были названы так, поскольку в слабые телескопы они выглядят, как диски далеких планет - Урана и Нептуна. Это внешние слои звезд, отделившиеся от них при сжатии ядра и превращении звезды в белого карлика. Эти оболочки расширяются и в течение нескольких десятков тысяч лет рассеиваются в космическом пространстве. Туманности другого типа образуются при взрывах сверхновых звезд.
Самая известная из них - Крабовидная туманность в созвездии Тельца. Она появилась как результат вспышки Сверхновой 1054 г. На этом месте в настоящее время внутри туманности наблюдается пульсар. Сама ажурная, состоящая из множества волокон оболочка сверхновой расширяется со скоростью свыше 1000 км/с. Взаимодействие таких оболочек с межзвездной средой приводит к появлению туманностей самой причудливой формы. Состав вещества, теряемого звездами, отличается от первичного состава межзвездной среды. В процессе термоядерных реакций в недрах звезд происходит образование многих химических элементов, а во время вспышек сверхновых образуются даже ядра тяжелее железа. Потерянный звездами газ с повышенным содержанием тяжелых химических элементов меняет состав межзвездного вещества, из которого впоследствии образуются звезды. Химический состав звезд «второго поколения», к числу которых принадлежит, вероятно, и наше Солнце, несколько отличается от состава старых звезд, образовавшихся ранее. В настоящее время объекты, имеющие разный возраст, по их распределению в пространстве принято разделять на ряд подсистем, образующих единую звездную систему - Галактику.
Наиболее четко выделяются две: плоская (диск) и сферическая (гало). Их расположение представлено на схеме, показывающей структуру Галактики в плоскости, перпендикулярной плоскости Млечного Пути; указаны корона, которая окружает эти подсистемы, центральная область Галактики, получившая название «балдж», и ее ядро, которое находится в направлении созвездия Стрельца, а также отмечено положение Солнца. Центр Галактики (область радиусом примерно 1 кпк) является не просто геометрическим центром нашей звездной системы, а представляет собой одну из наиболее интересных ее составных частей, которая по своим характеристикам существенно отличается от всех остальных. Особая роль ядра в любой звездной системе стала очевидной в ходе исследования других галактик. К сожалению, ядро нашей Галактики изучено еще недостаточно, поскольку скрыто от нас мощными газопылевыми облаками. В центральных областях Галактики наблюдается повышенная концентрация звезд, расстояния между которыми здесь в десятки и сотни раз меньше, чем в окрестностях Солнца. Так, в самой середине, в области радиусом всего 50 пк, сосредоточены сотни горячих звезд. Центральная часть в радиусе примерно 150 пк, помимо большого количества звезд, заполнена ионизованным водородом, масса которого в 1 млн. раз превышает массу Солнца. Область размером 10 пк, называемая ядром Галактики, является источником радиоизлучения, внутри которого находятся красные гиганты и отдельные плотные газовые конденсации размером около 0,1 пк. Два других радиоисточника находятся дальше от центра Галактики и представляют собой молекулярные облака с массой в 1 млн. масс Солнца, в которых идет бурный процесс звездообразования. Некоторые исследователи полагают, что в центре Галактики находится массивная (1 млн. масс Солнца) черная дыра, однако эти представления не являются общепризнанными.
Авторство, источник и публикация:
1. Подготовлено проектом 'Астрогалактика'
2. Публикация проекта 10.01.2007
Главная страница раздела
|