Пульсары

Обсуждение общих тем связанных с астрономией. Викторины и конкурсы форума.

Модераторы: Ulmo, Булдаков Сергей

Пульсары

Непрочитанное сообщение Валера » 11 ноя 2011 17:52

В 27 тысяч световых лет от Земли выявлен пульсар, не соответствующий представлениям об этом виде нейтронных звезд

Изображение

ЛОС-АНДЖЕЛЕС, 4 ноября. /Корр. ИТАР-ТАСС Алексей Качалин/. Поразительное открытие сделала группа ученых США и Германии с помощью данных, полученных бортовыми приборами космического телескопа НАСА «Ферми».

На расстоянии около 27 тыс световых лет от Земли исследователи изучили пульсар, характеристики которого противоречат современным представлениям об этом виде нейтронных звезд, являющихся источником различных видов электромагнитного излучения, доносящегося до нашей планеты через определенные интервалы времени /импульсами/.

Объекту, расположенному в направлении созвездия Стрельца, всего 25 млн лет, хотя обычно возраст пульсаров приближается к 1 млрд лет, сообщило в четверг космическое ведомство США.

Пульсирующая нейтронная звезда, занесенная в каталоги под названием J1823-3021A /буквы латинские/, входит в состав NGC 6624 — одного из 160 шаровидных скоплений древних звезд, вращающихся вокруг нашей галактики Млечный путь.

Пульсары являют собой один из конечных продуктов своей эволюции, обладая такими признаками, как малый размер, высокая плотность и огромная масса. Так, чайная ложка их вещества может весить столько же, сколько высочайшая гора на Земле — Эверест. Такие звезды исключительно быстро вращаются вокруг собственной оси, порой совершая до 43 тыс оборотов в минуту.

Пульсары тусклы, не способны на вспышки активности, генерируя потоки излучения за счет аккреции вещества соседних обычных звезд. Когда этот источник энергии заканчивается, пульсар постепенно превращается в холодную мертвую глыбу.

J1823-3021A, как заключили астрономы, наоборот, по космическим меркам «молода», активна и является яркой. И этим пульсар резко выделяется в своем шаровидном скоплении звезд.

«Поразительно то, что источником всего гамма- излучения, которое доносится от скопления, является один единственный объект. По тому, насколько быстро он испускает энергию, можно заключить, что объект сформировался относительно недавно. Он выделяется в своем окружении подобно кричащему ребенку в доме престарелых», — пояснил один из авторов работы Паоло Фрейре из Института радиоастрономии Макса Планка в Бонне.

Попутно ученые открыли 9 новых пульсаров, испускающих гамма-излучение. «С учетом этого общее число пульсаров, открытых с помощью телескопа “Ферми”, превысило 100. Это настоящая веха в исследованиях, так как до запуска “Ферми” в 2008 году ученым было известно лишь 7 таких звезд, испускающих гамма-излучение», — отметил астрофизик Пабло Саз из Института физики заряженных частиц при Калифорнийском университете в Санта-Круз.

Основные положения исследования опубликованы в номере журнала «Сайенс» за 3 ноября.

http://news.mail.ru/society/7250445/
Валера
Статус: Старожил
Статус: Старожил
 
Сообщения: 538
Зарегистрирован: 10 мар 2011 16:36
Откуда: Москва
Благодарил (а): 1 раз.
Поблагодарили: 5 раз.

Re: Пульсары

Непрочитанное сообщение Валера » 11 ноя 2011 18:00

Пульса́р — космический источник радио-, оптического, рентгеновского, гамма- излучений, приходящих на Землю в виде периодических всплесков (импульсов).

Первый пульсар был открыт в июне 1967 г. Джоселин Белл, аспиранткой Э. Хьюиша, на меридианном радиотелескопе Маллардской радиоастрономической обсерватории Кембриджского университета на длине волны 3,5 м (85,7 МГц). За этот выдающийся результат Хьюиш получил в 1974 году Нобелевскую премию. Современные названия этого пульсара — PSR B1919+21 или PSR J1921+2153.

Результаты наблюдений несколько месяцев хранились в тайне, а первому открытому пульсару присвоили имя LGM-1 (сокр. от Little Green Men — маленькие зелёные человечки). Такое название было связано с предположением, что эти строго периодические импульсы радиоизлучения имеют искусственное происхождение. Однако доплеровское смещение частоты (характерное для источника, совершающего орбитальное движение вокруг звезды) обнаружено не было. Кроме того, группа Хьюиша нашла ещё 3 источника аналогичных сигналов. После этого гипотеза о сигналах внеземной цивилизации отпала, и в феврале 1968 года в журнале «Nature» появилось сообщение об открытии быстропеременных внеземных радиоисточников неизвестной природы с высокостабильной частотой.

Изображение
Схематическое изображение пульсара. Сфера в центре изображения — нейтронная звезда, кривые линии обозначают линии магнитного поля пульсара, голубые конусы — потоки излучения пульсара

Сообщение вызвало научную сенсацию. До конца 1968 г. различные обсерватории мира обнаружили ещё 58 объектов, получивших название пульсаров, число посвящённых им публикаций в первые же годы после открытия составило несколько сотен. Вскоре астрофизики пришли к общему мнению, что пульсар, точнее радиопульсар, представляет собой нейтронную звезду. Она испускает узконаправленные потоки радиоизлучения, и в результате вращения нейтронной звезды поток попадает в поле зрения внешнего наблюдателя через равные промежутки времени — так образуются импульсы пульсара.

На 2008 год уже известно около 1790 радиопульсаров (по данным каталога ATNF). Ближайшие из них расположены на расстоянии около 0,12 кпк (около 390 световых лет) от Солнца.

Изображение
Изображение Крабовидной туманности в условных цветах (синий — рентгеновский, красный — оптический диапазон). В центре туманности — пульсар

Несколько позже были открыты источники периодического рентгеновского излучения, названные рентгеновскими пульсарами. Как и радио-, рентгеновские пульсары являются сильно замагниченными нейтронными звёздами. В отличие от радиопульсаров, расходующих собственную энергию вращения на излучение, рентгеновские пульсары излучают за счёт аккреции вещества звезды-соседа, заполнившего свою полость Роша и под действием пульсара постепенно превращающегося в белого карлика. Как следствие, масса пульсара медленно растёт, увеличивается его момент инерции и частота вращения, в то время как радиопульсары со временем, наоборот, замедляются. Обычный пульсар совершает оборот за время от нескольких секунд до нескольких десятых долей секунды, а рентгеновский пульсар делает сотни оборотов в секунду.

Материал из Википедии — свободной энциклопедии


Пульсары

Пульсары (англ. pulsars, сокращенно от Pulsating Sources of Radioemission — пульсирующие источники радиоизлучения), слабые источники космического излучения, всплески которого следуют друг за другом с очень медленно изменяющимся периодом. Первый П. был открыт в 1967 в Великобритании; к 1975 известно уже около 100 объектов этого вида. По типу радиоизлучения П. отличаются от всех известных ранее источников космического радиоизлучения, характеризующихся либо постоянной интенсивностью (галактики или радиогалактики), либо нерегулярными всплесками радиоизлучения (Солнце, некоторые вспыхивающие звёзды).

Для известных П. значения периода (т. е. интервала времени между двумя последовательными всплесками излучения) заключены в интервале между 0,033 сек и 3,75 сек. Первые наблюдения П. свидетельствовали о чрезвычайно высоком постоянстве их периодов. Однако при последующих наблюдениях было установлено, что периоды П. очень медленно возрастают. Для большинства П. время, в течение которого период возрастает вдвое, совпадает по порядку величины с их возрастом и составляет миллионы и десятки миллионов лет. Однако имеются два П., у которых время удвоения периода существенно меньше, а именно: у П., находящегося внутри Крабовидной туманности, являющейся остатком взрыва Сверхновой 1054, период удваивается за 2400 лет, а у П. внутри сверхновой в созвездии Паруса — за 24 тыс. лет. Эти П. — самые молодые и имеют наиболее короткие периоды. Существование у них оболочек, характерных для сверхновых звёзд, свидетельствует в пользу того, что П. образуются в результате взрыва сверхновых. Отсутствие же таких оболочек у других, более старых П. объясняется, по-видимому, тем, что они уже успели рассеяться в пространстве. Интересная особенность молодых П. — внезапные скачкообразные уменьшения периода в результате бурных процессов, происходящих в них. Практически все П. наблюдаются только в радиодиапазоне электромагнитного излучения. Исключение составляет только П. в Крабовидной туманности, который можно наблюдать также в оптическом, рентгеновском и гамма-диапазонах.

Исследования радиоизлучения П. в диапазоне радиоволн с длиной от 10 см до 10 м позволили установить, что максимум излучения приходится, как правило, на метровые волны. Было также обнаружено, что один и тот же импульс на разных длинах волн регистрируется при наблюдениях не одновременно: сначала Земли достигает излучение с более короткой длиной волны, а затем — с более длинной. Это разделение всплеска радиоизлучения объясняется тем, что при распространении радиоволн в плазме, заполняющей межзвёздное пространство, скорость коротковолнового излучения близка к скорости света в вакууме, а для длинноволнового — заметно меньше. Т. о., время запаздывания импульса, наблюдаемого в двух несовпадающих длинах волн, пропорционально расстоянию до П. и средней концентрации электронов на луче зрения. Поскольку концентрация электронов на луче зрения известна, то, измерив поток радиоизлучения на Земле и установив время запаздывания, можно определить расстояние до П. и оценить мощность радиоизлучения. Оказалось, что расстояния до известных сейчас П. заключены в интервале от десятков пс до нескольких кпс, а мощность радиоизлучения каждого из них в миллионы раз больше радиоизлучения Солнца даже в периоды его бурной активности.

Наиболее вероятное объяснение П. даёт теория вращающегося "маяка". Согласно данной теории, П. представляет собой вращающуюся звезду, излучающую узкий пучок радиоволн. Наблюдатель, попадающий в этот пучок, видит периодически повторяющиеся импульсы радиоизлучения. В теории "маяка" период П. равен периоду вращения звезды; это объясняет высокое постоянство периодов П. Модель "маяка" объясняет и многие др. данные наблюдений, в частности медленное увеличение периода является следствием замедления вращения звезды. Однако возникли серьёзные затруднения с выбором класса звёзд, который мог бы обеспечить наблюдаемые явления. Для того чтобы обеспечить очень высокую угловую скорость вращения, характерную для П., звезда должна быть весьма компактной, иметь малые размеры. Белые и красные карлики (компактные звёзды) не могут иметь таких угловых скоростей вращения: они были бы немедленно разорваны центробежными силами. Единственным приемлемым классом звёзд оказался известный только на основании теоретических исследований класс нейтронных звёзд. Наблюдения П. явились, т. о., подтверждением существования нейтронных звёзд. Нейтронные звёзды характеризуются очень малыми размерами: диаметр нейтронной звезды с массой, равной примерно массе Солнца, составляет всего несколько десятков км. Плотность вещества внутри таких звёзд достигает 1014 —1015 г/см3, т. е. имеет порядок плотности вещества внутри атомных ядер. Нейтронная звезда — это как бы колоссальное атомное ядро, состоящее в основном из нейтронов. Источник энергии, излучаемой П., — кинетическая энергия вращения нейтронной звезды. Механизм излучения П. связан с существованием на их поверхности сильных магнитных полей с напряжённостью, достигающей тысяч млрд. э. Трансформация кинетической энергии вращения звезды в излучение происходит, по-видимому, вследствие того, что вращающаяся магнитная звезда индуцирует вокруг себя электрическое поле, ускоряющее частицы окружающей П. плазмы до высоких энергий. Эти ускоренные частицы и дают наблюдаемое излучение.

В 70-х гг. открыты П., излучающие главным образом в рентгеновском диапазоне. Эти П. оказались нейтронными звёздами, входящими в состав двойных звёздных систем. Второй компонент в этих системах — нормальная звезда. Газ из оболочки нормальной звезды течёт к нейтронной звезде, закручивается вокруг неё и в конце концов вдоль магнитных силовых линий поля нейтронной звезды падает на её поверхность. В результате возникает направленное рентгеновское излучение, которое и создаёт эффект пульсаций для наблюдателя, попадающего в пучок направленного излучения.

Материал из Большой советской энциклопедии
Валера
Статус: Старожил
Статус: Старожил
 
Сообщения: 538
Зарегистрирован: 10 мар 2011 16:36
Откуда: Москва
Благодарил (а): 1 раз.
Поблагодарили: 5 раз.

Re: Пульсары

Непрочитанное сообщение Валера » 19 фев 2018 18:29

Пульсар ярче 10 миллионов солнц удивил астрономов

Объект, который ученые приняли изначально за черную дыру, на самом деле оказался самым ярким и странным пульсаром из всех, что мы когда-либо находили. «Этот компактный остаток небольшой звезды — настоящая электростанция», — прокомментировала находку Фиона Харрисон, профессор физики в Калифорнийском технологическом институте и главный исследователь телескопа NuSTAR.

Видео об открытии:
https://youtu.be/5Zc3HYNIU3k

«Мы никогда не видели ничего подобного. Мы думали, что объект с такой энергией просто обязан быть черной дырой».

«Пульсар с такой энергией получает первый приз за странность», — говорит Дом Уолтон, ученый, работающий с данными NuSTAR.

Обычно пульсары обладают массой от одной до двух солнечных. Новый пульсар предположительно попадает в ту же категорию, но светит примерно в 100 раз ярче, чем предполагает теория.

«Мы никогда не видели пульсара, который хотя бы близко был таким же ярким, — говорит Уолтон. — Честно говоря, мы не знаем, как это произошло, и теоретики будут жевать эту резинку очень долгое время».

Помимо своей странности, находка поможет ученым понять класс очень ярких рентгеновских источников, которые называются «ультраяркими рентгеновскими источниками» (ULX).

Обнаружение NuSTAR первого ультраяркого пульсара было в подробностях описано в последнем номере Nature.

Большой сюрприз
«Это определенно было неожиданным открытием, — говорит Харрисон. — На самом деле, мы искали что-то совершенно другое, когда наткнулись на это».

В начале этого года астрономы в Лондоне зафиксировали впечатляющую вспышку сверхновой (SN2014J), которая происходит только раз в сто лет, в сравнительно близкой к нам галактике Messier 82 (M82), или галактике Сигара, в 12 миллионах световых лет от Земли. Из-за редкости этого события телескопы по всему миру и космосу уставились в точку вспышки, чтобы в подробностях изучить ее последствия.

Помимо сверхновой, M82 хранит в себе и ряд других ULX. Когда Маттео Бачетти из Университета Тулузы во Франции, ведущий автор новой работы, решил поближе рассмотреть эти ULX в данных NuSTAR, он открыл что-то странное — пульсирующий или мигающий свет в галактике.

«Это было большим сюрпризом, — говорит Харрисон. — На протяжении десятилетий все думали, что эти ультраяркие рентгеновские источники представляют собой черные дыры. Но черные дыры не умеют так пульсировать».

Зато пульсары умеют. Они как гигантские магниты, которые излучают радиацию из своих магнитных полюсов. По мере их вращения сторонний наблюдатель с рентгеновским телескопом, расположенным под прямым углом, увидит вспышки мощного света, поскольку лучи периодически будут попадать в поле зрения наблюдателя, подобно свету маяка.

Не черная и не дыра

Причина, по которой большинство астрономов предполагали, что черные дыры являются источниками ультраярких рентгеновских источников, заключается в невероятной яркости этих самых источников. Черные дыры могут быть в десять или в миллиард раз больше Солнца по массе, что делает их гравитационную тягу намного сильнее, чем у пульсара.

По мере того как вещество попадает в черную дыру, гравитационная энергия превращает его в тепло, что порождает рентгеновский свет. Чем больше черная дыра, тем больше у нее энергии, которая заставляет объект блестеть. С удивлением обнаружив вспышки, поступающие от M82, команда NuSTAR начала проверять и перепроверять данные. Вспышки действительно были там, один импульс в каждые 1,37 секунды.

Следующим шагом было выяснение того, какой источник рентгеновского излучения мог бы производить такие вспышки. Исследователи проанализировали данные NuSTAR и второго рентгеновского телескопа NASA «Чандра», чтобы исключить порядка 25 разных рентгеновских источников, и наконец остановились на ультраярком рентгеновском источнике M82X-2.

После того как были определены пульсар и его местоположение в M82, осталось еще много вопросов без ответа. Пульсар во много раз превосходит предел Эддингтона, базовое правило в физике, которое устанавливает предел светимости, которую может достичь объект с определенной массой.

«Это самое жестокое нарушение этого предела, такого мы еще не видели, — говорит Уолтон. Мы знаем, что предел может нарушаться на небольшое значение, но наша находка просто взрывает его».

NuSTAR хорошо подготовлен к открытиям вроде этого. Помимо того, что космический телескоп видит высокоэнергетические рентгеновские лучи, он еще и видит их уникальным образом. Вместо того чтобы делать снимки так, как делает камера вашего телефона — когда изображение размывается при движении — NuSTAR обнаруживает отдельные частицы рентгеновских лучей и отмечает их, когда измеряет. Это позволяет команде делать своевременный анализ и в данном конкретном случае увидеть, когда свет от ULX выходит в виде импульсов.

Теперь, когда команда NuSTAR показала, что этот ULX представляет собой пульсар, Харрисон отмечает, что многие другие ультраяркие рентгеновские источники также могут быть пульсарами.

«Все предполагали, что эти источники — черные дыры, — говорит она. — Теперь я думаю, что людям нужно вернуться к чертежной доске и подумать еще разок. Возможно, наша находка представляет собой уникальный и странный объект, а возможно, они не так уж и редки. Пока мы просто не знаем. Дальнейшие наблюдения покажут».

https://hi-news.ru/science/pulsar-yarche-10-millionov-solnc-udivil-astronomov.html
Валера
Статус: Старожил
Статус: Старожил
 
Сообщения: 538
Зарегистрирован: 10 мар 2011 16:36
Откуда: Москва
Благодарил (а): 1 раз.
Поблагодарили: 5 раз.


Вернуться в Общая астрономическая тематика

Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 3